20161209_105330

Photos from the field: East Gippsland, Victoria

I recently began a brand new project with the University of Melbourne. The beginning of a new project is filled with equal parts excitement and trepidation—excitement at the novelty, the blank canvas, the potential, and trepidation at not wanting to put a foot wrong in critical early decisions that will affect the outcome of a career-defining opportunity.

Here the photos from a first foray into East Gippsland, surveying sites for bird-pollinated Prostanthera walteri.

img_2600

Mt. Elizabeth

 

img_2604

img_2610

Snowy River National Park

img_2659

Prostanthera walteri

img_2543

Prostanthera hirtula

img_2613

McKillops Bridge

img_2614

The Snowy River

img_2616

The Snowy River

img_2623

Prostanthera walteri

img_2638

img_2626

Snowy River National Park

img_2645

Gippsland waratah – Telopea oreades

prostcomp1

Floral diversity in Prostanthera

 

Australia’s sexual swindlers.

Seduction. Pollination. Deception.

Screenshot 2016-09-30 09.37.47.png
I recently wrote an article for Wildlife Australia about Australian sexually deceptive orchids, their evolutionary biology, and historical and current research about them. You can download and read the article here: PDF. Thanks to Carol Booth for her collaboration and editorial guidance.

The latest of Australia’s sexually deceptive orchids that I have seen (below) are Caleana major, the Flying Duck orchid (left), and a spider orchid Caladenia clavigera (right). Both were photographed last week in Brisbane Ranges NP, Victoria.

Flowering this year is one of the best seasons of recent times both east and west of the country. So if you’re in Australia, don’t miss the chance to get out bush and enjoy it.

IMG_3557

Sex, Lies and Nectar: Evolutionary Biology as Written by Flowers

I spoke to the Canberra Skeptics group earlier this week, on a subject most near to my heart. The abstract appears below. It is my aim to soon turn elements of this into a video for online audiences.

In the eyes of evolution, finding a suitable mate for reproduction is one of the most critical stages in any organism’s life. The great majority of flowering plants have outsourced this essential service to animals, giving rise to a fascinating evolutionary dance between plants and pollinators.

Charles Darwin was the first to recognize that flowers were superb teachers of evolution. I will touch on his classic work and explain what we have since learned about remarkable flowers who smell like dung and death, flowers who attract insects with the false promise of sex and a fly with a ridiculously long tongue.

These and other awesome examples of floral evolution would surely have thrilled Darwin, and may even solve his “abominable mystery”: the rapid rise of the spectacular diversity of flowering plants.

IMG_0850-3

Male thynnid wasp gripping tightly to the lure of the hammer orchid (Drakaea glyptodon).

Pollination, evolution and an orchid’s seductive ruse.

In a PR coup for dumpy little green orchids everywhere, research from my PhD recently landed on the cover of the journal Evolution. But what is it about?

Spring. The Blue Mountains, west of Sydney. Altitude 1000m. Frosty winds whip a swaying eucalypt canopy infiltrated by billowing cloud. Down below, amongst snowgrass tufts, rotting logs and bracken dwell the diminutive bird orchids. Genus: Chiloglottis. They huddle in tight colonies, sporadically sprayed by the high country squall.

Each plant holds two leaves pressed flat to the damp ground. Between the leaves a stem rises, holding aloft a single intricate flower in dusky shades of green and burgundy. When banks of cloud give way to azure sky and the shrike-thrushes resume their piping, these small blooms become irresistible lures.

Their target are the gracile flower wasps. Slim glossy black insects, zooming silently on shimmering wings. They are helplessly drawn to the flower. The bird orchid is emitting a scent, detectable only to wasps, which signals the promise of a mate. Known as ‘sexual deception’, the elaborate ruse uses a precise mimicry of female wasp pheromones to fool male wasps into pollinating the orchid.

However, here on the forest floor there is not only one species of orchid outwitting wasps for its own reproductive ends. Look closer and slight differences in the characteristics of flowers and visiting wasps betray something more complex and interesting. There are actually two species here, looking largely the same, growing in the same places, both deceiving their wasp pollinators through the false promise of sex.

By emitting subtle variations of their chemical trickery, these orchids have “tuned in” to two different pollinator species. This research paper explores this phenomenon as a way of separating the gene pools of closely related organisms. At the heart of it, the story here is about the forces that keep species apart once they split, or reproductive isolation.

First, we show that the different pheromones emitted by the two orchids are responsible for attracting different pollinators. Through arcane powers of chemical synthesis that I do not understand, chemists created synthetic orchid pheromones for us. We took these into the landscape and showed that the two chemicals attract two different wasps. The only perceivable difference between the wasps involved is yellow spangles on the carapace of one of the varieties. What’s more, this specific attraction is exclusive. Chemical A only attracts wasp A, and chemical B only appeals to wasp B.

Next, we take real flowers of both kinds and place them in a row and watch the hapless wasps roll in. We see that wasp A is only attracted to flower A, even when flower B is present just centimetres away. The results are identical to the results of the synthetic pheromone experiment.

On the basis of scent, we therefore expect that orchid A may never mate with orchid B. Exclusive attraction ensures that despite living amongst one another, some orchids may never exchange genes. Despite looking almost the same to us, they may as well exist on separate islands. They distinct separate species.

In order to back this up we then looked at the genetics of the species. By using the same kind of genes used in human DNA fingerprinting we were able to show that the two kinds of orchid exhibit differences in their gene pools of a degree expected if they were different species. Furthermore, analysis showed not a single individual displaying the genetics of a hybrid. Our last tests were to make hand-pollinated hybrids to check that hybrids could indeed form. These crosses showed hybrid offspring germinated and grew faster than pure crosses.

The potential for animals to drive the formation of plant species has long been recognized. This study gives us a strong case study of how that process might look. Our orchids are spectacular examples of the power of pollinators to create and maintain plant species. Through selective pollinator attraction, the orchids have been set upon unique and separate evolutionary journeys.

Further reading:

Whitehead, M. R. and Peakall, R. (2014) Pollinator specificity drives strong prepollination reproductive isolation in sympatric sexually deceptive orchids. Evolution 68: 1561–1575. doi: 10.1111/evo.12382

Rod Peakall and Michael R. Whitehead (2014) Floral odour chemistry defines species boundaries and underpins strong reproductive isolation in sexually deceptive orchids Annals of Botany 113 (2): 341-355 first published online September 19, 2013 doi:10.1093/aob/mct199

Plant pollinator interactions in the South African flora

The slides from my recent departmental seminar at the ANU are below.

The first half of the talk concentrates on plant-pollinator interactions, floral guilds and floral evolution. The second half is a slideshow of vistas, creatures and plants I encountered in my work.

Roses reflect greatest above 620 nm, Violets reflect at 420 – 480 nm…

Roses are red,  Violets are blue,  Botany is sexy, But less so than you.

Roses are red,
Violets are blue,
Botany is sexy,
But less so than you.

Along with odour, flower colour is perhaps the most important cue plants use to advertise to pollinators. Change the colour of a flower and that change can have large consequences on which pollinating animals are likely to visit[1]. Bees, for example, are attracted to purple flowers with UV highlights. If that plant were to mutate to white, it could very well find itself being visited by nocturnal moths[2].

In studying plant-pollinator evolution and ecology, it is very important then that we have some objective quantification of the colour of a flower. Human eyes are famously fallible and many insects and birds can see outside the range of our colour vision (400 – 700 nm).

The instrument we use is a spectrometer[3]. It uses optic fibres to bounce an initially white-light beam off the surface you want to measure. The wavelengths of light that are reflected (as opposed to absorbed) determine the colour of the surface you are looking at. The spectrometer collects the reflected light, separates the wavelengths through diffraction and digitises the signal. The result is a graph such as the one above.

In the graph, the wavelength is given on the horizontal axis, while the proportion of reflectance is on the vertical. The rainbow bar above provides an approximation of how the human eye perceives a given wavelength of light. The rose therefore will reflect greatest at wavelengths above 620 nm, the red part of the spectrum. A violet most strongly reflects around 420 – 480 nm. A pure white surface would show high reflectance across the range of the visible light spectrum.

Dedicated to my sweetheart, who for the second year in a row has been alone on Valentine’s.

Kniphofia are red, Agapanthus are blue.

Fieldwork is fun, But I do miss you. 

My bruised human ego

IMG_1344-1

This is the best photo I got of a group of baboons who gave me quite an experience the other day.

On a sandy fynbos trail, I rounded a corner obscured by vegetation and came abruptly face to face with a troupe of seven of these creatures. The closest member was only 3 metres from me. All of them were stopped, standing or sitting,  looking at me as I did the same. My first reaction was one of awe, these creatures are impressively muscular and intimidating up close. One of them, a very large male, was wearing a radio collar. My second instinct was to take advantage of the photo opportunity, but my camera was in my backpack.

My only close experience with monkeys comes from Indonesian macaques, and extrapolating from the damage these ones wreak on tourists’ belongings I was not keen to get the baboons interested in anything I owned. I was also aware that some baboon troupes in the Cape have a reputation for raiding. Bins, bags, picnics, cars, houses are all fair game. They have overcome their fear of humans and are now a famous nuisance requiring full time management.

My bag therefore remained zipped and in place on my back. I raised my arms and hissed, to try and persuade them off the trail. One of the leaders began to advance on me, and the others stood up to follow suit.

Finally, I was forced to concede the path to the baboons. I back-stepped into the bush beside the track, allowing them a 2 metre thoroughfare which they calmly took in an orderly and nonchalant fashion. Only after passing me, when their backs were exposed, did they pick up speed into a quick trot for a dozen metres to put some distance between us.

 

Red Hill fynbos track

Kleinplaas Dam fynbos track

 

As you were, Australian researchers.

Waking up to look at this before a coffee and a shower was enough to put me into fight or flight mode this morning.

With hackles raised I read on and found a sciency corner of Australian Twitter users in a flap about Abbott’s 20% ARC cuts. #AbbottsRazor #ARCcuts etc etc

While the wording of these Tweets is strictly true, they are also completely misrepresenting the politics of these ARC funding estimates.

The numbers are below. The top row is the current budget handed down by Labour in 2013. The middle row is the Abbott Government amendment. The bottom row is the difference. Numbers represented in thousands (000’s).

2013-14

2014-15

2015-16

2016-17

TOTAL

May budget

$883,959

$879,983

$834,587

$788,710

$3,387,239

Amendment

$883,959

$853,110

$783,253

$716,205

$3,236,527

Difference

$0

$26,873

$51,334

$72,505

$150,712

YES. ARC funding will dive by 19% in the next 4 years. But this is a dive courtesy of the Labour Government’s May 2013 budget.

YES. Abbott is cutting funding further, but this amounts to 4% cut in total ARC spending over the next 4 years. The majority of the sliding investment trend came from the initial budget trajectory set out in May.

The time to make a flap about budget cuts was in May. And some of us had a good whinge then. The truth of this latest news is that it is a continuation of the prevailing “death by a thousand cuts” trend, as another shaving is whittled off our future investment in research and innovation.

But the big lesson here is to hold fire when it comes to social media. A forgiving person might acknowledge that this shows that scientists are only human, prone to the occasional passionate, emotional, reactionary outbursts. A harder judge might question whether researchers who don’t think critically and do a bit of their own “research”, deserve any ARC funding at all.

Thanks Alice Hutchings, for engaging your brain. And Tom Stayner for the title.

Postscript

Jeremy Shearman from the Genome Institute in Thailand has produced this graphic showing the effect of amendments on ARC funding over the last few years. The trend is one of providing more upfront dollars with increasingly steep sliding scales of less funding later.

ARC funding amendment history

Mount Gilboa’s meadows.

This has been my sometimes workplace for the last two weeks:

The slopes of Mt. Gilboa. Watsonia densiflora in the foreground.

The slopes of Mt. Gilboa. Watsonia densiflora in the foreground.

To catch pollinators in action you need fine weather. On those days when the skies are clear and there’s little more than a gentle breeze in the air, Mt Gilboa is an exciting place to be. Gleaming green Malachite sunbirds chase one another between aloes, eagles and vultures wheel overhead, a startled bush buck bounds down the slope and out of view.

On these days the flowering veld is humming with the noise and motion of uncountable beetles, bees, flies and wasps, flitting, buzzing, mating and feeding. Protea heads crawl with furry monkey beetles, massive grasshoppers zoom by on the wing and bees of varied colour, shape and size forage diligently.

The flowering veld

The flowering veld

I come here to collect long tongue flies. As you prowl among the Watsonia inflorescences you first hear the telltale loud buzz, then look for the hovering fly probing a flower with its long proboscis.

Philoliche aethiopica foraging on Watsonia densiflora

Philoliche aethiopica is a specialist forager on Watsonia densiflora. This fly’s thorax is completely covered in pollen.

Netting the flies is not too difficult—they are lazy fliers. Keeping them alive in my flight-cage back closer to sea level has proved to be the big challenge. With the season wrapping up for this site, I’m unfortunately looking at the possibility of coming away with little more than just jars of dead flies.

Watsonia lepida, common veld iris and long tongue fly host plant.

Watsonia lepida, common veld iris and long tongue fly host plant.

Despite the setback there are other research avenues to pursue as the Summer field season unfolds. The luxury of a long field season is one factor that makes this veld such a productive place to study pollination.

Test post: Captive fly video

Currently in South Africa, my time right now is largely being spent on catching flies, planning to catch more flies and working out how to keep them alive and happy in captivity. The poor little video below is a quick capture of what I wish all my captive flies would do—buzz around and visit flowers like they’re just hanging out back in the veld they came from.

More on the fly project to come in the near future.

 

I hope to use this space in future to update on research progress, life in South Africa and occasionally sound off on things of a biology, botany, entomology and overall scientific nature.

 

Thanks for looking.